GridSearchCV
Exhaustive search over specified parameter values for an estimator.
Important members are fit, predict.
GridSearchCV implements a “fit” and a “score” method. It also implements “score_samples”, “predict”, “predict_proba”, “decision_function”, “transform” and “inverse_transform” if they are implemented in the estimator used.
The parameters of the estimator used to apply these methods are optimized by cross-validated grid-search over a parameter grid.
Read more in the User Guide.
Python Reference (opens in a new tab)
Constructors
constructor()
Signature
new GridSearchCV(opts?: object): GridSearchCV;
Parameters
Name | Type | Description |
---|---|---|
opts? | object | - |
opts.cv? | number | Determines the cross-validation splitting strategy. Possible inputs for cv are: |
opts.error_score? | "raise" | Value to assign to the score if an error occurs in estimator fitting. If set to ‘raise’, the error is raised. If a numeric value is given, FitFailedWarning is raised. This parameter does not affect the refit step, which will always raise the error. |
opts.estimator? | any | This is assumed to implement the scikit-learn estimator interface. Either estimator needs to provide a score function, or scoring must be passed. |
opts.n_jobs? | number | Number of jobs to run in parallel. undefined means 1 unless in a joblib.parallel\_backend (opens in a new tab) context. \-1 means using all processors. See Glossary for more details. |
opts.param_grid? | any | Dictionary with parameters names (str ) as keys and lists of parameter settings to try as values, or a list of such dictionaries, in which case the grids spanned by each dictionary in the list are explored. This enables searching over any sequence of parameter settings. |
opts.pre_dispatch? | string | Controls the number of jobs that get dispatched during parallel execution. Reducing this number can be useful to avoid an explosion of memory consumption when more jobs get dispatched than CPUs can process. This parameter can be: Default Value '2*n_jobs' |
opts.refit? | boolean | Refit an estimator using the best found parameters on the whole dataset. For multiple metric evaluation, this needs to be a str denoting the scorer that would be used to find the best parameters for refitting the estimator at the end. Where there are considerations other than maximum score in choosing a best estimator, refit can be set to a function which returns the selected best\_index\_ given cv\_results\_ . In that case, the best\_estimator\_ and best\_params\_ will be set according to the returned best\_index\_ while the best\_score\_ attribute will not be available. The refitted estimator is made available at the best\_estimator\_ attribute and permits using predict directly on this GridSearchCV instance. Also for multiple metric evaluation, the attributes best\_index\_ , best\_score\_ and best\_params\_ will only be available if refit is set and all of them will be determined w.r.t this specific scorer. See scoring parameter to know more about multiple metric evaluation. See Custom refit strategy of a grid search with cross-validation to see how to design a custom selection strategy using a callable via refit . Default Value true |
opts.return_train_score? | boolean | If false , the cv\_results\_ attribute will not include training scores. Computing training scores is used to get insights on how different parameter settings impact the overfitting/underfitting trade-off. However computing the scores on the training set can be computationally expensive and is not strictly required to select the parameters that yield the best generalization performance. Default Value false |
opts.scoring? | any | Strategy to evaluate the performance of the cross-validated model on the test set. If scoring represents a single score, one can use: |
opts.verbose? | number | Controls the verbosity: the higher, the more messages. |
Returns
Defined in: generated/model_selection/GridSearchCV.ts:29 (opens in a new tab)
Properties
_isDisposed
boolean
=false
Defined in: generated/model_selection/GridSearchCV.ts:27 (opens in a new tab)
_isInitialized
boolean
=false
Defined in: generated/model_selection/GridSearchCV.ts:26 (opens in a new tab)
_py
PythonBridge
Defined in: generated/model_selection/GridSearchCV.ts:25 (opens in a new tab)
id
string
Defined in: generated/model_selection/GridSearchCV.ts:22 (opens in a new tab)
opts
any
Defined in: generated/model_selection/GridSearchCV.ts:23 (opens in a new tab)
Accessors
best_estimator_
Estimator that was chosen by the search, i.e. estimator which gave highest score (or smallest loss if specified) on the left out data. Not available if refit=False
.
See refit
parameter for more information on allowed values.
Signature
best_estimator_(): Promise<any>;
Returns
Promise
<any
>
Defined in: generated/model_selection/GridSearchCV.ts:562 (opens in a new tab)
best_index_
The index (of the cv\_results\_
arrays) which corresponds to the best candidate parameter setting.
The dict at search.cv\_results\_\['params'\]\[search.best\_index\_\]
gives the parameter setting for the best model, that gives the highest mean score (search.best\_score\_
).
For multi-metric evaluation, this is present only if refit
is specified.
Signature
best_index_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/model_selection/GridSearchCV.ts:647 (opens in a new tab)
best_params_
Parameter setting that gave the best results on the hold out data.
For multi-metric evaluation, this is present only if refit
is specified.
Signature
best_params_(): Promise<any>;
Returns
Promise
<any
>
Defined in: generated/model_selection/GridSearchCV.ts:618 (opens in a new tab)
best_score_
Mean cross-validated score of the best_estimator
For multi-metric evaluation, this is present only if refit
is specified.
This attribute is not available if refit
is a function.
Signature
best_score_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/model_selection/GridSearchCV.ts:591 (opens in a new tab)
cv_results_
A dict with keys as column headers and values as columns, that can be imported into a pandas DataFrame
.
For instance the below given table
Signature
cv_results_(): Promise<any>;
Returns
Promise
<any
>
Defined in: generated/model_selection/GridSearchCV.ts:535 (opens in a new tab)
feature_names_in_
Names of features seen during fit. Only defined if best\_estimator\_
is defined (see the documentation for the refit
parameter for more details) and that best\_estimator\_
exposes feature\_names\_in\_
when fit.
Signature
feature_names_in_(): Promise<ArrayLike>;
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/GridSearchCV.ts:774 (opens in a new tab)
multimetric_
Whether or not the scorers compute several metrics.
Signature
multimetric_(): Promise<boolean>;
Returns
Promise
<boolean
>
Defined in: generated/model_selection/GridSearchCV.ts:749 (opens in a new tab)
n_splits_
The number of cross-validation splits (folds/iterations).
Signature
n_splits_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/model_selection/GridSearchCV.ts:697 (opens in a new tab)
py
Signature
py(): PythonBridge;
Returns
PythonBridge
Defined in: generated/model_selection/GridSearchCV.ts:104 (opens in a new tab)
Signature
py(pythonBridge: PythonBridge): void;
Parameters
Name | Type |
---|---|
pythonBridge | PythonBridge |
Returns
void
Defined in: generated/model_selection/GridSearchCV.ts:108 (opens in a new tab)
refit_time_
Seconds used for refitting the best model on the whole dataset.
This is present only if refit
is not false
.
Signature
refit_time_(): Promise<number>;
Returns
Promise
<number
>
Defined in: generated/model_selection/GridSearchCV.ts:724 (opens in a new tab)
scorer_
Scorer function used on the held out data to choose the best parameters for the model.
For multi-metric evaluation, this attribute holds the validated scoring
dict which maps the scorer key to the scorer callable.
Signature
scorer_(): Promise<any>;
Returns
Promise
<any
>
Defined in: generated/model_selection/GridSearchCV.ts:674 (opens in a new tab)
Methods
decision_function()
Call decision_function on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports decision\_function
.
Signature
decision_function(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Must fulfill the input assumptions of the underlying estimator. |
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/GridSearchCV.ts:186 (opens in a new tab)
dispose()
Disposes of the underlying Python resources.
Once dispose()
is called, the instance is no longer usable.
Signature
dispose(): Promise<void>;
Returns
Promise
<void
>
Defined in: generated/model_selection/GridSearchCV.ts:167 (opens in a new tab)
fit()
Run fit with all sets of parameters.
Signature
fit(opts: object): Promise<any>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Training vector, where n\_samples is the number of samples and n\_features is the number of features. |
opts.fit_params? | any | Parameters passed to the fit method of the estimator. If a fit parameter is an array-like whose length is equal to num\_samples then it will be split across CV groups along with X and y . For example, the sample_weight parameter is split because len(sample\_weights) \= len(X) . |
opts.groups? | ArrayLike | Group labels for the samples used while splitting the dataset into train/test set. Only used in conjunction with a “Group” cv instance (e.g., GroupKFold ). |
opts.y? | ArrayLike [] | Target relative to X for classification or regression; undefined for unsupervised learning. |
Returns
Promise
<any
>
Defined in: generated/model_selection/GridSearchCV.ts:221 (opens in a new tab)
init()
Initializes the underlying Python resources.
This instance is not usable until the Promise
returned by init()
resolves.
Signature
init(py: PythonBridge): Promise<void>;
Parameters
Name | Type |
---|---|
py | PythonBridge |
Returns
Promise
<void
>
Defined in: generated/model_selection/GridSearchCV.ts:117 (opens in a new tab)
inverse_transform()
Call inverse_transform on the estimator with the best found params.
Only available if the underlying estimator implements inverse\_transform
and refit=True
.
Signature
inverse_transform(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.Xt? | any | Must fulfill the input assumptions of the underlying estimator. |
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/GridSearchCV.ts:279 (opens in a new tab)
predict()
Call predict on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports predict
.
Signature
predict(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Must fulfill the input assumptions of the underlying estimator. |
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/GridSearchCV.ts:316 (opens in a new tab)
predict_log_proba()
Call predict_log_proba on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports predict\_log\_proba
.
Signature
predict_log_proba(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Must fulfill the input assumptions of the underlying estimator. |
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/GridSearchCV.ts:351 (opens in a new tab)
predict_proba()
Call predict_proba on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports predict\_proba
.
Signature
predict_proba(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Must fulfill the input assumptions of the underlying estimator. |
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/GridSearchCV.ts:388 (opens in a new tab)
score()
Return the score on the given data, if the estimator has been refit.
This uses the score defined by scoring
where provided, and the best\_estimator\_.score
method otherwise.
Signature
score(opts: object): Promise<number>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | ArrayLike [] | Input data, where n\_samples is the number of samples and n\_features is the number of features. |
opts.y? | ArrayLike [] | Target relative to X for classification or regression; undefined for unsupervised learning. |
Returns
Promise
<number
>
Defined in: generated/model_selection/GridSearchCV.ts:423 (opens in a new tab)
score_samples()
Call score_samples on the estimator with the best found parameters.
Only available if refit=True
and the underlying estimator supports score\_samples
.
Signature
score_samples(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Data to predict on. Must fulfill input requirements of the underlying estimator. |
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/GridSearchCV.ts:465 (opens in a new tab)
transform()
Call transform on the estimator with the best found parameters.
Only available if the underlying estimator supports transform
and refit=True
.
Signature
transform(opts: object): Promise<ArrayLike>;
Parameters
Name | Type | Description |
---|---|---|
opts | object | - |
opts.X? | any | Must fulfill the input assumptions of the underlying estimator. |
Returns
Promise
<ArrayLike
>
Defined in: generated/model_selection/GridSearchCV.ts:500 (opens in a new tab)